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Diffusion Simulation with a Deterministic 
One-Dimensional Lattice-Gas Model 

Y. H. Qian, ~ D.  d'Humi~res,  1 and P. Lallemand I 

A one-dimensional lattice-gas model is proposed and used to simulate diffusion 
processes in one dimension. Explicit forms of transport coefficients are given as 
a function of density and kinetic energy within the Bottzmann approximation. 
Without definitions of temperature and pressure, a steady nontrivial solution is 
given analytically in the nonconvective case when the kinetic energy is kept 
constant. 
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1. I N T R O D U C T I O N  

Since the work of Frisch et aL, (1~ there has been an increasing interest in 
lattice-gas models for fluid mechanics and many extensions of this model 
have been proposed and applied to different problems, using different 
species or velocities and/or higher space dimension. (2) While most of the 
studies driven by practical applications concern two- and three-dimen- 
sional flows, little work exists on the one-dimensional case: simulations of 
the Burgers' equation ~3~ and compressible flows. (4'5) However, the one- 
dimensional models present very interesting theoretical properties. They are 
significantly simpler than their counterpart in higher dimensions and thus 
they give better access to analytical results. They also have specific proper- 
ties such as the divergence of transport coefficients with the size of the 
system. (6) In this paper, we study a one-dimensional model with two 
particle speeds and use it to simulate diffusion processes in a much simpler 
way than Chopard and Droz. (7) The microscopic model and its conserved 
quantities are described in Section 2. The macroscopic equations and the 
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transport coefficients are given in Section 3, along with a discussion of 
the difficulties of correctly defining a temperature scale. The details of the 
calculations for the complete set of known nonphysical invariants will be 
left for a future work. The results of the numerical simulations are 
presented in Section 4 for the speed of sound and the steady solution at 
constant kinetic energy. 

2. MICROSCOPIC DESCRIPTION OF THE MODEL 

We take a circle and discretize it in L sites (lattice with periodic 
boundary condition). There are particles which interact at the nodes of the 
lattice and move from node to node according to their velocities. The 
evolution of the system consists in two steps: collision step and propaga- 
tion step. To obtain the hydrodynamic behaviors, the redistribution of 
particles during the collision step must satisfy three conservation laws for 
mass, momentum, and energy. During the propagation step, the particles 
move from nodes to nodes according to their velocities, the mass, momen- 
tum, and energy being globally conserved. Let M =  {m~} and C =  {ci} be 
the sets of particle masses and velocities for the four-bit model studied in 
this paper: 

i 1 2 3 4 

M {m, m, 2m, 2m} 
C {2c, - 2 c ,  c, - c )  

We add an exclusion principle for the particles, such that there is no 
more than one particle of the same mass and same velocity on a given site 
at a given time, as if all the particles were fictitious fermions. Among the 
2 4 = 16 possible states only 2 of them can undergo effective collisions: the 
head-on collisions of a fast-light (hot) particle with a slow-heavy (cold) 
particle leads to a reversal of their velocities (collision of particle 1 with 
particle 4 gives particle 2 and particle 3, and vice versa), as shown in Fig. t. 

Since there is an exclusion principle, the system can be described by 
four Boolean fields {ni(x, t)}, where r t i ( X  , t) is the presence (ni= 1) or the 
absence (n i=0)  of particle i at site x and time t. The exact discrete 
microdynamical equation for ni(x, t) is given by (for a time step equal 
to 1) 

ni(x + ci, t+ 1)=ni(x, t ) -v iT(n(x,  t)) (2.1) 

1 4 3 2 

Fig. 1. Reversible collision laws of the model: particles (1 + 4),-~ (2 + 3). 
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where ci is the velocity of particle i, vi is the ith component of a four- 
component vector v =  { 1 , -  1 , - 1 ,  1}, and the collision term T(n) is a 
nonlinear function of nk (k e { 1, 2, 3, 4 }) given by 

T(n)=nl(1--n2)(1 --n3)n4--(1--nl)n2n3(1--n4) (2.2) 

The conservation laws come from the following relations derived from 
Eq. (2.1): 

nl(x+2c, t+ l )+n2(x -2c ,  t+l)=nl(x , t )+n2(x, t )  (2.3) 

n3(x+c , t+l )+n4(x -c , t+ l )=n3(x , t )+n4(x , t  ) (2.4) 

na(x+2c, t+l ) - -n4(x- -c , t+l )=nl(x , t ) - -n4(x , t  ) (2.5) 

Summing the appropriate linear combinations of Eqs. (2.3)-(2.5) on 
all the lattice nodes, it is very easy to check the conservation of the total 
mass, momentum, and kinetic energy. But Eqs. (2.3) and (2.4) can also be 
summed on sublattices when L is divisible by four, showing the existence 
of four nonphysical conservation laws. (8 lO) Three of these "spurious" 
invariants are "staggered" in space and time: 

Hhe=(--1)~ Z 
x 

H.o=(-1)' 
X 

Hc=(-1)tZ 
x 

and the fourth one is only 

( -- 1) x [nl(2x, t) + n2(2x, t)] (2.6) 

( - - l f fEnl (2x+l , t )+nz(2x+l , t ) ]  (2.7) 

( - 1 )  x [n3(x, t ) +  n4(x, t)] (2.8) 

staggered in space: 

F h = ~  (--1)  x [n~(x, t)+n2(x, t)] (2.9) 
X 

Recently, we have found four more invariants with a period three both 
in space and time when L is divisible by three: 

H~,r = ~t ~ dox [nl(x, t ) -  n4(x, t)] (2.10) 
x 

Ho~t=ch ' ~ ch x En2(x, t)-n3(x, t)] (2.11) 
x 

H~,r = c o ' ~  cox[nl(x, t ) -  ng(x, t)] (2.12) 
x 

Ho, t=  co t ~  co~[n2(x, t)--n3(x, t)] (2.13) 
x 
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where co = ( - 1 + 3 ~ -  1 )/2 and o3 = ( - 1 - 3 xf~i-) /2  are the complex 
cube roots of unity. 

Then, when L is divisible by 12, the present model has 11 global 
invariants. 

3. MACROSCOPIC EQUATIONS AND TEMPERATURE 

3.1. Macroscopic Equations and Transport Coefficients 

With such a large number of invariants, the derivation of the full set 
of macroscopic dynamical equations is very painful and will be left for 
future work. In what follows, we shall assume that all the spurious 
invariants are set to zero and their local fluctuations can be neglected. 
These assumptions allow us to deal only with the physical quantities and 
to derive their dynamical equations from the following three key points. 

The first one is the Boltzmann approximation (molecular chaos 
assumption): the ensemble average of the collision term of Eq. (2.1) can 
be replaced by the collision term of the averaged local quantities 
Ni(x, t ) =  (hi(X, t)). Then, taking the ensemble average, Eq. (2.1) can be 
written 

Ni(x + ci, t + 1) = Ni(x, t) - vi T(N(x, t)) (3.1) 

The macroscopic variables--the density p, the momentum J, and the 
energy e--are now related to the Ni by 

4 

p = ~, miNi (3.2) 
i = 1  

4 

J =  ~ miciNi (3.3) 
i = 1  

~ 1 mic~Ni (3.4) e =  
i = l  

The second point is the existence of an H-theorem ~11) which proves the 
existence of an equilibrium state for the homogeneous situation obeying a 
Fermi-Dirac distribution, a function only of the conserved quantities 
assumed uniform in space and time. 

The last point is the existence of different time scales for different 
physical processes when the homogeneous equilibrium is modified by small 
perturbations, slowly varying over length scales longer than l/e, with e ,~ 1: 
relaxation to equilibrium with a time scale to (at this level, the dynamics 
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is reversible), macroscopic sound propagation with a time scale tl = to~e, 
and macroscopic diffusion with a time scale t 2 = to/e 2, with t o ~ tl ~ t2. 

When e and J/mc are much smaller than 1 (and the spurious 
invariants set to zero), a local expansion of the local equilibrium around 
J =  0, followed by a multiscale expansion in e of the perturbations, can be 
used to derive the complete set of macroscopic hydrodynamics equations 
from Eq. (3.1): 

Otp + C3xJ=O 

c3,J + Ox2e = 0 

1 2 
~3 te -t- ~3 x( ~C s J )  + ~ x( C p 6~xp q- Ce~  xe  ) =- 0 

(3.5) 

(3.6) 

(3.7) 

where the speed of sound Cs and the coefficients Cp and C e are functions 
of p and e: 

2 ( 4 d h ( 1 - d h ) + d c ( 1 - d c ) ) c 2  (3.8) 
c s =  Z 

C 1 p = ( ~ - 1 )  c 4 (3.9) 

C e = - -  --1 5C 2 - c ,  (3.10) 
2 

Z, dh, and d c being related to p and e by 

Z = dh(1 -- dh) + dc(1 - de) (3.11) 

2e - pc 2 
dh 6mc2 (3.12) 

2pc 2 - e 
dc 6mc2 (3.13) 

Equations (3.5) (3.7) are an approximation of the exact Boltzmann 
equation which neglects the contributions of order 8J 3, 82J 2, 83J~ and 
higher. The full set of equations correct to the same order of the spurious 
invariants requires the addition of eight equations. Their derivation will be 
obtained by splitting the local distributions N i in their slow and fast 
components in space and time. (12) Preliminary results for the spurious 
invariants of period two and four indicate that they act as passive scalars 
and do not interact with the physical equations up to order eI 3, where I is 
one of these spurious invariants. At this time, no analysis of the effects of 
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the spurious invariants of period three has been performed, but since they 
appear at the level of momentum terms, they could show up at the level of 
the pressure term, as in ref. 10. 

3.2. Def in i t ions of a Temperature  Scale 

We did not use the term "heat conduction" in the previous subsection 
because the temperature was not defined. It  seems that the usual definition 
of temperature T through the kinetic energy e is not very proper in our 
fictitious fermion system. We want to discuss the two definitions of tem- 
perature through entropy and through kinetic energy e. The definition of 
entropy S is the following: 

4 

S =  ~ [Ni ln  N~+ (1 - N i ) l n ( 1  - N ~ ) ]  (3.14) 
i = 1  

which can be written for an equilibrium state as follows: 

1 
S = ~ [-(2e - pc 2) ln(2e - pc 2) + (2pc 2 - e) ln(2pc 2 - e) 

+ (6mc 2 + p c  2 - -  2e) ln(6mc 2 + pc 2 - 2e) 

+ (6mc 2 - 2pc 2 + e) ln(6mc 2 -- 2pc 2 + e) -- 4 In 6] (3.15) 

The temperature can be defined by: 

1. Tth = -(Oe/OS)o, so that Tth is given by 

/ 2 p c Z - e  6 m c Z + p c 2 - 2 e )  -1 
Tth = 3C 2 {ln 6mc2 _ 2pc2 + e + 2 in ~e - - -~2  (3.16) 

which varies over ( - 0 %  + oe), 

2. Definition through kinetic energy: 

2e 
T~ = - -  (3.17) 

P 

which varies between 1 and 4, while Tk varies between 1 and 2 in the case 
studied by Chopard  and Droz. ~7) 

Figure 2 shows the temperature as a function of the density for e = 3.0 
according to Eqs. (3.16) and (3.17). The thermodynamic temperature Tth is 
negative for p <  3m, which corresponds to the situation of a two-level 
system with more particles in the excited state than in the fundamental one. 



Diffusion Simulation with 1D Lattice-Gas Model 569 

F i g .  2.  

5.0 50 

~o.o. o ~  

-2.5- -23 
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P 

T e m p e r a t u r e  a s  a f u n c t i o n  o f  d e n s i t y ;  t h e  s o l i d  l i n e s  c o m e  f r o m  E q .  ( 3 . 1 6 )  a n d  t h e  

dashed line frgm Eq. (3.17). 

For p > 3, Tth is positive, corresponding to the physical situation of more 
cold particles than hot ones. Around p = 3, Tth changes its sign, going from 
- oo to oo. As stated by Ernst, ~13) from a thermodynamic point of view, the 
only valid definition of the temperature is given by (3.16), which must be 
used to derive the related coefficients, such as the heat conduction or heat 
capacities. 

In addition, in the same paper Ernst pointed out that the Droz model 
and ours describe more a diffusive process than a thermal one: the 
populations of slow and fast particles are constant. However, the formal 
derivation of the dynamical equations is exactly the same for the two 
approaches and, in our opinion, this point remains quite academic without 
a blind test to distinguish them, a test which has not yet been found. 

4. N U M E R I C A L  S I M U L A T I O N S  

4.1. Speed of Sound M e a s u r e m e n t s  

The speed of sound is measured from the period of oscillation of a 
small periodic perturbation of the velocity for given average density and 
energyJ 14) The statistical noise is kept to a reasonable level by averaging 
2048 independent lines with a length L =  1024 and periodic boundary 
conditions. Figures 3 and 4 show the results of simulations for two different 
energies e compared to the values predicted by Eq. (3.8). Note that this 
method gives access to Cp and Ce, but these quantities diverge for long 
wavevectors and comparisons between simulations and theory requirevery 
lengthy calculations beyond the scope of this paperJ 6) 

822/68/'3-4-15 
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Fig. 3. 
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Speed of sound c, as a function of density p for energy e = 1.0, square points are the 
numerical results, the solid line is from Eq. (3.8). 

4.2. S teady  So lu t ions  

When J- -  0, p is steady and e constant, as a consequence of Eqs. (3.5) 
and (3.6), while it resu|ts from Eq. (3.7) that e is also steady and p is the 
solution of 

Ox(CpO~p)=O (4.1) 

I n t e g r a t i n g  t w i c e  E q .  ( 4 . 1 ) ,  w e  o b t a i n  t h e  a n a l y t i c a l  s o l u t i o n  for  a g i v e n  

k i n e t i c  e n e r g y  e: 

6m 2c2 (Pl - P~ 
p + (m2c4 + 6mcZe_e2)l/21n k p _ ~ 2 / =  Klx + K 2 (4.2) 

O9 
II 

~D 

2.0  

1.8 
0 

1.6 

O 
2 
> 
I 
I 
m 

Q) 

2 3 4 
p - - t o t a l  dens i ty(Model-VI ,L=256)  

Fig. 4. Same as Fig. 3, for e = 3.0. 
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Fig. 5. 
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Steady solution of density p as a function of the distance x; points are the numerical 
results, the solid line is the analytical solution. 

where K1 and K2 are two integration constants which depend on the 
boundary conditions, while Pl, P2 are the two roots of the following 
equation: 

6mc 2 -I- 8e  5e  2 - -  6mc2e 
p2 - 0  (4.3) 

5c 2 P +  5c 4 

with Pl > P2. We see from Eq. (4.2) that the density p is almost a linear 
function of x. 

1 ' ' ' L ' ' J ' I  . . . .  I . . . .  I . . . .  

> 
J 
I 

O 

> 

Fig. 6. 
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V e l o c i t y f l u c t u a t i o n s s h o w i n g t h e a m p l i t u d e o f t h e s t a t i s t i c a l n o i s e .  
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For the simulations, the initial configuration is chosen such that 
J =  0.0, e = 3.0, and p(x) is a linear function of x, with p(0)= 4.0 and 
p(L) = 2.0. In this case, K1 and /s are respectively equal to 2.448/L and 
1.776 (L = 1023). Using fixed boundary conditions, the values of e, p(0), 
and p(L) are kept constant. The simulation is then run 1000 time steps to 
reach an equilibrium. Figure 5 gives the final density distribution; note the 
nearly linear dependence on x of this distribution, which prevents any 
measurement of size effects on Cp from such a noisy simulation. Figure 6 
shows the velocity fluctuation resulting from the statistical noise, due to the 
microdynamics and the Monte Carlo method used to set up the initial con- 
figuration and the boundary conditions. Since these fluctuations remain 
small and bounded, there is no production of a macroscopic flow and the 
hypotheses of steady states and negligible spurious invariants hold during 
the time evolution. 

5. C O N C L U S I O N  

This very simple, and apparently harmless, lattice-gas model can be 
used not only to simulate one-dimensional unsteady flows, but also to 
investigate both numerically and theoretically difficult problems appearing 
in lattice gases, such as the effects of spurious invariants or the thermal 
properties of these models. Various boundary and initial conditions can 
easily be inserted in the numerical program (this is one of the advantages 
of lattice-gas models). We have derived the three hydrodynamic equations 
and the corresponding transport coefficients through a Chapman-Enskog 
expansion. Since the submission of the first version of this paper, an 
exhaustive search for linear invariants has been performed which guaran- 
tees that all of them are now knownJ 9) However, the derivation of the eight 
macroscopic dynamical equations for the eight linear spurious invariants 
has not yet been finished due to the complexity of the calculations. 
Numerical simulations do confirm the theoretical predictions for the speed 
of sound Cs and the analytical steady solution of density p. Numerical 
measurements for the transport coefficients are under investigation and 
their divergence will be studied by the renormalization group theory. (6) 
Exact solutions have been obtained for the corresponding model of the 
standard discrete kinetic theory without exclusion principle. (a5'16) 

We have also shown that this gas is not an ideal one, as stated by 
Chopard and Droz. (7) However, a complete thermodynamic description 
remains to be done. Especially, the pressure and the sound speed have to 
be derived within this frame and the results compared to those obtained by 
the kinetic theory. In our opinion, these points are of particular importance 
in order to retain enough control on the simulations of thermal processes. 
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